US009361297B2

a2 United States Patent 10) Patent No.: US 9,361,297 B2
Cameron et al. (45) Date of Patent: Jun. 7, 2016
(54) WEB SERVICE-BASED, DATA BINDING 7,194,473 Bl* 3/2007 Hichwa et al.
ABSTRACTION METHOD 7,873,569 B1* 1/2011 Cahnccooovvenreenrrnnen. 705/38
2005/0108625 A1* 52005 Bhogal et al. . 715/505
. 2005/0183003 Al™* 82005 Periccceeevveennn .. 715/507
(75) Inventors: Stefan Cameron, Ottawa (CA); Kevin 5006/0064313 AL* 3/2006 Steinbarth etal. 2051
Paul Matassa, Ottawa (CA) 2007/0050489 Al* 3/2007 Dowedeit 709/223
2007/0157083 Al* 7/2007 Royetal. 715/522
(73) Assignee: ADOBE SYSTEMS 2009/0183117 Al* 7/2009 Chang 715/810
INCORPORATED, San Jose, CA (US) 2010/0313119 Al* 12/2010 Baldwinetal. 715/256
. . o . * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1764 days. Primary Examiner — Mohammed R Uddin
(74) Attorney, Agent, or Firm — Shook, Hardy & Bacon
(21) Appl. No.: 12/512,771 LLP.
(22) Filed: Jul. 30, 2009
(57) ABSTRACT
(65) Prior Publication Data
US 2014/0032484 A1 Jan. 30, 2014 A methpd for pr0V1.dlng a data l?lndlng abstrac.tlon.. The
method includes serving an interactive document via a digital
1) T data communications network using a server. The method
(51) Int.ClL . . g . .
includes generating, with intelligence in the document, a data
GO6F 17/30 (2006.01) g
(52) US.Cl binding request to resolve a data value placeholder that has no
CPC ' GOGF 17/30014 (2013.01): GOGF 17/3089 static dat? location or source reference. With a datg b%nding
""" (2013.01); GOGF 1 - /3’ 0893 (2013.01) web service, the method includes generating a data dictionary
. . S ’ request that includes a placeholder identifier. The method
(58) Field of Clasmﬁcatlol; Searc.h y) includes using the data binding web service to process a data
CPCe.. /G06F .17 30014; /G06F .17 3089; (/}06E dictionary response which includes placeholder content for
17/30893; GOGL 17/30358; GOGF 17/243; the placeholder to determine a source of the data value. The
/ GOGF 17/246 method includes the data binding web service accessing the
USPC ereeeeneneneesees 7077795, 793, 796, 8,08’ 999.101 determined data source to obtain the data value and providing
See application file for complete search history. the interactive document with a response including the place-
(56) References Cited holder identifier and the resolved placeholder data value. The

U.S. PATENT DOCUMENTS

5,996,076 A * 11/1999 Rowneyetal. 713/156
7,107,268 B1* 9/2006 Zawadzki et al.

interactive document then replaces the placeholders with the
returned data value.

20 Claims, 6 Drawing Sheets

SERVER 3 /!00
145 DATA DICTIONARY
s DATABASE
DATA
DICTIONARY o
VISUAL L-
INTERFACE "
- (3)
DATA DICTIONARY
(3 WEB SERVICE
1 1]
g | HYORATED LIST OF 1
PLACEHOLDER | | PLACEHOLDER 1DS|
120\ 2 OBJECTS YO HYDRATE "
i
StRveRt [150 / =
1o
14 ?&%’g&m PLACEHOLDER SOURCE
T3] [[cuen iNTeracts ENTITY THAT DATA VALUES DATA BINDING |FRAMEWORK |} D2
(== | WITH DOCUMENT CONTAINS WEB SERVICE |INTERFACE
CUENT PLACEHOLDERS PLACEHOLDERS MYSaL
UE "T0 RESOLVE) 10 RESOLVE rsa
1ot SERVER 2 .

A

132 130

US 9,361,297 B2

Sheet 1 of 6

Jun. 7,2016

U.S. Patent

{5
mmﬁ \oﬂ 71
\
Lbu 7 4IANIS xé,
YIHIHIS IATOSTY 04 {31058 0L INED
TOSAN SHIGIONIOVTd SHIGTIOHIW 4
T s e00
AZ JOVIHALNG 301AY3S GIM SNIVINGD | je— mmﬂwmmqwmmwﬁ__ﬁw \j
£/80 @%E%& ONIONIE ¥1YQ TR 1vHl EEWW 5 - \
- b RIRELED!
10408 5 mmawﬁuﬁm INIWNO0Q bil ot
vivd - S
mﬂ (N
0 JIVHaAH OL Si93ra0 el Oct
{SCI ¥3CIOHIOVId | | WICIONIVI K o
¥l 40 181 Q3LY40AH
N
RIS FIM L]
AHYNOILOIO VIVO [1
/ —
.\\» X
a J0VAHILNI
TYNSIA
e
ort A AYNOHLOIG
e Yiva
8YaYIva e
Ve ARYNOLLDIG Y1VC (e
001 £ HIAIS

U.S. Patent Jun. 7, 2016 Sheet 2 of 6 US 9,361,297 B2

. T— 204
200 START DATA BINDING
N o>

k
| BUILD DATA DICTIONARY DATABASE |~ 410

220

STORE TEMPLATES WITH PLACEHOLDERS AND DATA BINDING REQUEST ENGINE IN DATA STORE E

-4

i CREATE/SERVE DOCUMENT BASED ON TEMPLATE F

228

o
o

4 230
é RECEIVE USER-PROVIDED DATA FOR DOCUMENT FROM CLIENT DEVICE V

k4

1 - 240
WITH DATA BINDING WEB SERVICE, RECEIVE DATA BINDING REQUEST ;J'

A

244
| GENERATE DATA DICTIONARY REQUEST WITH PLACEHOLDER LIST

%

250
i RECEIVE DATA DICTIONARY RESPONSE WITH HYDRATED PLACEHOLDER OBJECTS E’/‘

kA

WITH INTERFACE, RESOLVE PLACEHOLDER OBIECTS BY ACCESSING DATA | ~ 280
SOURCE 3TORING DOCUMENT DATA

D
RETURN PLACEHOLDER DATA VALUES TO DOCUMENT V 7

280
| UPDATE DOCUMENT WITH RESOLVED DATA VALUES AND PROVIDE TO CLIENT DEVICE j/ ‘

ki

END

290

FIG. 2

U.S. Patent Jun. 7, 2016 Sheet 3 of 6 US 9,361,297 B2

312 300

) | /

<FIELD NAME="DEARFIRSTNAME > DATA FIELD 1
<Hl=><TEXTFIELD/ >
<YALUE> ™ 310
<TEXT>1</TEXT>
</VALUE>
<BIND MATCH="DATAREF' REF='DDDATA.DEARFIRSTNAME />
</FIELD>

322
!

//PHZ !/

<FIELD NAME="ADDRESS">
<Ui><TEXTFIELD/>
<VALUE>

<TEXT>2</TEXT> 3

</VALUE>
<BIND MATCH="DATAREF’ REF="DDDATA ADDRESS'/>

</FiELD>

DATAFIELD 2

332
),

/7 PH3: s ;
<FIELD NAME="CREDITCARDTYPE'> DATA FIELD 3
<CHOICELIST OPEN="USERCONTROL'/></Ui>

<VALUE> - 33
<TEXT>3</TEXT>
</VALUE>
<BIND MATCH="DATAREF REF="DDDATA.CREDITCARDTYPE'/>
</FIELD>

FIG. 3

U.S. Patent Jun. 7, 2016 Sheet 4 of 6 US 9,361,297 B2

{ } /
<PHLIST> // DATA BINDING REQUEST

417 —— <PHID="{ID}/>

41g —— <DATA> ... </DATA>

</PHLIST>»
FIG. 4
510
\\ 516
‘ J
<PHLIST> // DD WEB SERVICE IESOG
/ <PH ID="{iD} /> REQUEST
512 T L spuuisT>

FIG. 5

U.S. Patent Jun. 7, 2016 Sheet 5 of 6 US 9,361,297 B2

7 \ :
518 DD WEB SERVICE RESPONSE
<PHLIST>
—<PHID="(ID} TEXT="(STRING} TYPE="STRING NUMBER LIST' SOURCE="(STRING}
816 CUSTOM="STRING} >
JOPTIONAL DESCRIPTION}
</PH=> 620
</PHLIST>
FIG. 6
700
P
710
/,/
<PHLIST>
<PH ID="iD} > [VALUE} </PH>
neo 714 718
</PHLIST>

FIG. 7

US 9,361,297 B2

Sheet 6 of 6

Jun. 7,2016

U.S. Patent

ERIE
638
(1355 v1va | |
mtllfL‘ - (Y190 SSI004d ‘01 4FNOLSMD 53y || s 7o
989 -~ YIOWHOLS VAV 08 V.10 NOILNIOS3Y 1SN0
Jﬁ \\, - (58
\ 258 -
o m
893 _HIIVIUILNI JOHNOS Viv(LS30 MOHE VIV,
N 968
20 1 HOIIINI N [IMvA viva Hd - 088
SHICTOHIOVTd IAT0STY 068
JONES 830 ONIONG vivg| LISNodSH SNIONIS V.V
988 -
e SHOMLIN
Aﬂ 14908 NIV viLm fr((\
148 740$83004d
02
E&ZB Hd £ ISNOIST o
mmm [STTHd] o8 ONIGNIB VAYE |- 7
pgg ~1 3SNOJSIH QG [iS3nDIM aQ NOTLONAY 18303 - 978
t INONIB YI¥D L
NOTLONA LT - o i |
SYIGTOHIOVIS IATMLTY
(i3 VAve
0iRIS Mg o V8 = I P HOLINOW
-
GHLINGY) IN3HNJ00 \\ ~0oN LA
_mﬁz&z% iaf a8 y r
. {
FIVH0LS VIVE bR 918 -
028 - ¥INEIS SN 008

US 9,361,297 B2

1

WEB SERVICE-BASED, DATA BINDING
ABSTRACTION METHOD

BACKGROUND

1. Field

The present disclosure relates, in general, to computer-
implemented methods for generating documents and forms
such as fillable forms that may be served over the Internet or
other network and for generating templates used to produce or
render such documents, and, more particularly, to improved
methods for binding or linking data such as enterprise or
company data assets to documents and templates.

2. Relevant Background

With the growing use of communications networks such as
the Internet, it has become more common for companies and
other users to serve electronic forms or documents in a variety
of forms over networks to clients, customers, or other end
users. The end users may use a computer or other electronic
device and a browser running on this device to access a web
page, for example, to view a form or document and to com-
plete the form and then submit the form data back to a web
server for processing of the data.

For example, a client of a web service provider may pro-
vide insurance information using such a served form or a
customer may provide credit card or other purchasing infor-
mation to complete a purchase via a fillable form. In other
cases, enterprises or businesses may allow employees to gen-
erate letters or packages that are then transmitted to recipients
such as customers on a large customer list using such fillable
form or document. Often, these fillable forms or documents
are rendered or created as document, letter, package, or form
templates and during rendering, data may be retrieved from a
data source and merged into the template to create a document
or form to be served to a client device. It has often been
difficult during rendering to properly link the data references
(or data called for) in the template to a proper data source,
especially when the location of the data or data source may
change over time.

Briefly, a data binding method is provided that may be
computer implemented, such as via use of a data binding web
service, to provide data bindings within a template or similar
application. The data bindings may be abstracted using data
dictionary (DD) information or entries and web services that
act to resolve the DD entries into actual data values by access-
ing an appropriate data store or data source. In brief, the
method involves steps or processes that replace static data
binding references that were placed in each template by add-
ing an indirection using placeholders that may be managed
globally via a corporate or enterprise data dictionary. The
placeholders are subsequently replaced in the method with
data (e.g., enterprise or corporate data or the like) outside of
the particular templates. When a location of the data in an
enterprise (or template user’s system) changes, only the web
service’s backend implementation is altered to reflect the
change in data location(s) such that all templates may con-
tinue to retrieve data for placeholders from the data dictionary
via a previously defined, generic web service call.

More particularly, acomputer-implemented method is pro-
vided allowing an online or electronic document to use
abstracted data binding. The method includes serving an
interactive document to a client or network node device via a
digital data communications network/link using a server or
computer. The interactive document may be rendered from a
template and include a data field with a placeholder (PH) for
a data value. The method may further include generating,
with intelligence such as an initialization script or data bind-

20

25

40

45

55

2

ing request function provided in/with the document or docu-
ment instruction/code set, a data binding request to resolve
the placeholder into the data value. Then, with a data binding
web service that may be provided with code devices/instruc-
tions executed by the same or a differing server, the method
may include generating a data dictionary request that includes
an identifier for the placeholder (which may be provided with
the data binding request along with request resolution data
such as a customer identifier, process data from the document
provided by an operator of the client during document filling/
interaction activities, or the like).

The method may further include using the data binding
web service to process a data dictionary response, which
includes placeholder content for the placeholder associated
with the placeholder identifier, to determine a source of the
data value and/or a location of the data source. The method
also includes the data binding web service accessing the
determined data source to obtain the data value and then
providing to the interactive document a data binding response
including the placeholder identifier and the resolved place-
holder data value. In some implementations, the serving of
the interactive document may include rendering in runtime
the interactive document from a previously stored/created
template, with the template designed such that a plurality of
data fields are included in document content (such as letter
paragraphs or the like) each including a data value place-
holder but without a static data binding reference for the data
value (as may have been the case with prior fillable forms or
documents). The data binding request may include request
resolution data such as a customer 1D, process data from the
document being filled by operation of the client, or the like,
and this resolution data may be used by the data binding web
service to access the data source and/or to resolve the data
value (e.g., query a data source with a customer ID along with
PH content from a data dictionary).

In some embodiments of the method, the data dictionary
response may be generated by a data dictionary wet) service
that provides an interface to a data dictionary database, which
includes entries with placeholder identifiers and a set of
placeholder content, such as information useful by the data
binding web service in accessing the data source (e.g., a
source identifier for the placeholder). Typically, the data dic-
tionary database would be designed such that its data entries
also provide no static bindings or references to the location of
the data source, whereby the location of the source may be
changed without requiring changes to the data dictionary
database and its entries. In the above manner, the method
abstracts data binding from the interactive document such
that the document has no knowledge of the source of the data
value, and, in some cases, the data dictionary database and
DD web service also have not stating reference or data bind-
ing to the source, with the data binding web service acting to
provide lists of placeholder IDs to hydrate to the DD web
service, to process hydrated PH objects returned from the DD
web service to determine the data source/data location, and to
access the data source and return placeholder data values to
the document.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates in functional block form a computer
system or network implementing a web service-based data
binding with abstraction techniques as described herein;

FIG. 2 illustrates a flow diagram of a data binding method
such as may be implemented with the systems of FIGS. 1 and
7,

US 9,361,297 B2

3

FIG. 3 illustrates a template showing data fields that may be
used to provide placeholders in the template and later ren-
dered documents;

FIG. 4 illustrates an exemplary data binding request as may
be generated by a document and received/processed by a data
binding web service;

FIG. 5 illustrates a data dictionary web service request that
may be generated by a data binding web service as part of a
data binding process;

5

FIG. 6 illustrates a data dictionary web service response 10

that may be generated by a data dictionary web service and
provided to a data binding web service to perform data bind-
ing or resolve a list of placeholders with corresponding data
from a data source or data store;

FIG. 7 illustrates a data binding web service response that
may be generated by a data binding web service and trans-
mitted to an interactive document for use in replacing place-
holders with data values; and

FIG. 8 illustrates an embodiment of a computer system or
network that may implement an abstracted data binding
method during document filling or serving experiences or
operations.

DETAILED DESCRIPTION

The following description describes the use of software
(and/or hardware) implementations to provide a web service
data binding abstraction to enhance creation or design of
templates. In some cases, it is useful to provide a way to
reference data such as data used in templates. For example, it
may be useful to better link data that is referenced in a tem-
plate to alocation in data storage or memory devices. In some
cases, the linking method is adapted to assist users or opera-
tors of a computer system, and its template design tools, to
more easily build templates (such as for letters or packages)
that may utilize nearly any kind or type of data to generate
documents.

It may be difficult to bind or link data or data assets to a
template of a letter, form, or package. In some cases, a data
source may be provided that stores data that may later be
merged into a template to create or render a document, pack-
age, or form. One binding technique that may be used during
template design or production is to include or insert data
placeholders in the template (such as user friendly data names
such as “Dear {First Name},” “Mr. {Last Name},” and so on)
that had no particular tie to any specific data source. Then, a
software module or binding engine may be run that inspects
each template in which data placeholders have been included
and make appropriate data bindings to a particular data source
and/or location of data corresponding to each data place-
holder by looking up the placeholder in a data location data-
base. A flaw with this approach is that it called for the binding
module or engine to modify each and every template in order
to set the correct data bindings for each placeholder. Issues
then may arise when a location of the bound data is changed
because now every template and rendered document or form
has to be updated manually to fix all the bindings. This may
take countless hours of hard labor and frustration would
undoubtedly ensue even for relatively small applications
involving hundreds of templates and documents let alone for
larger enterprises where thousands of manual fixes may be
required. In some cases, the templates may not have to be
corrected with updates to the entries in the data location
database being performed to point to a new location of the
data, but this technique does not work in most cases due to the
nature of data bindings as such bindings cannot be modified in
real time once a template has been rendered into a document

15

20

25

35

40

45

50

55

60

65

4

into which live datais inserted (e.g., modifying links provided
by templates would not fix improper data bindings in docu-
ments that have already been rendered using the templates).

The following description provides an enhanced method
by which data bindings in templates may be abstracted using
information in a data dictionary or location reference data-
base and web services to resolve entries in the data dictionary
to actual data values. Such a method or implementation is
useful because, as discussed above, making changes in bind-
ings at run-time is often too late since these bindings are
evaluated by a run-time engine at a set point in time. Embodi-
ments of the proposed solution may specifically address this
issue since the resolution of bindings is designed to occur as
part of the run-time processing. For example, an implemen-
tation of one embodiment of the solution has the result of all
bindings looking to a data binding web service (DBWS) or
databinding web service (DBWS) module run by one or more
processors. From there, the location of the data, typically
stored directly in the bindings, may change atany time. As far
as the form (or runtime document or interactive document) is
concerned, the binding does not change.

In the code, a traditional data binding may look like: <bind
match="dataRef” ref="$.customer.company”/>. This is a
fixed binding to a node in the data which is:

<{dataRoot}>
<customer>
<company=>
</customer>
</{dataRoot }>

This binding cannot be altered at runtime. If the field
needed to import and export data from another data node, it
could not be done. In one solution described herein, the bind-
ing may look instead like:

(request)

<connect connection="DataBindingWebService”
usage="exportOnly” ref=*$.phList”/>

(response)

<connect connection="DataBindingWebService”
usage="importOnly” ref="$.resolved PhList”/>

Behind the DBWS call, if the data location changed from
“/lcustomer/company” to ““//client/workplace”, for example,
the exemplary implementation would take care of it and the
form/document itself would be oblivious to the change, effec-
tively and transparently altering the “binding” at runtime.

In this description, it may be useful to provide definitions
for a number of terms. The term “template” as used herein is
generally an electronic or digital data version or set of code/
instructions for providing a letter, package, fillable form, or
the like that may be stored in a data store or memory in a form
corresponding to a design-time form prior to being rendered.
Design-time form may be, for example, an XML forms archi-
tecture (XFA) template that defines the presentation and
behavior of the form/document. At design-time, these
attributes are able to be modified, but there is no actual instan-
tiation or rendering of the form/document. In the context of
Adobe LiveCycle®, for example, a form “template”
describes the basis for a (not “the”) runtime version of that
form. The runtime form may take on different variations
depending on changes to a form document object model
(DOM) via script and/or data. The basis for the form DOM
(generated at runtime) is its template, which is defined/modi-
fied at design-time only. In other words, the template typically

US 9,361,297 B2

5

does not change, with the deltas or changes that provide
runtime variations going into the form DOM.

The term “document™ may be an electronic version or set of
code/instructions in a runtime form after rendering (e.g., a
runtime document or interactive document) such as a letter
filling experience provided based on rendering of a template.
Content is typically any data, code, or other components/
items that may be included in a template. A data dictionary or
data dictionary database may be a collection of placeholders
that represent data that may be included in a document built
from a template. A data binding web service generally may be
aweb service that is responsible for the abstraction of the data
bindings between a data dictionary placeholder and its
resolved data value. A data dictionary web service may be a
web service that is responsible for creating, modifying, and
accessing placeholders in the data dictionary (e.g., to create
hydrated placeholder objects from lists of placeholder iden-
tifiers or IDs).

FIG. 1 illustrates a computer system or network 100 as may
be used by an enterprise to serve numerous documents to
clients 110 for them to fill (such as in an e-commerce setting
with fillable forms), for them to modify and transmit/use
(such as when generating company letters, advertising mail-
ers, and the like), or for them to otherwise interact with an
electronic set of data after it has been rendered from a tem-
plate. Such interaction is shown at 114 and may include a
client (or user/operator of a client node or network connection
device) 110 requesting a document 122 and providing data to
modify or complete the document 122. The system 100 is also
shown to include a first server or document server 120 that
functions to respond to client 110 requests for documents and,
in response, to retrieve and/or provide runtime documents
122 (templates that have been rendered into documents such
as interactive documents, forms, letters, or packages).

Each runtime or served document 122 may be considered a
relatively generic entity that includes data placeholders that
can be resolved as described herein to data values by an
abstracted data binding process. Each form or document 122
is designed to have the intelligence or code modules/instruc-
tions that may be run to generate data binding web service
requests to resolve a list or set of placeholders into data values
(which may then be merged into the document 122 by the
server 120 or one or more software components run by the
server 120), as shown at 124. What a document 122 is or what
configuration it will take may differ depending on a particular
implementation of the system 100. For example, when the
system 100 is adapted to provide a correspondence manage-
ment system or implementation, the document 122 may be an
XFA form or other form document with data fields that each
has one or more placeholder (PH) identifiers (IDs). Each PH
1D may be resolved during use of the document by sending a
PH resolution request to a data binding web service 132
running or provided on a second server 130 in the system 100.
In another implementation, the document 122 may include an
eXtensible Markup Language (XML) representation of a
package to build that contains various PH IDs that may be
resolved as part of building or generating the package or
document 122.

Further, each document 122 typically has one or more
software modules/code or instruction sets/intelligence that
may be implementation-specific that enables it to submit a list
of PH IDs in a request 124 to the data binding web service
132. Further, each document 122 may have one or more
software modules/code or instruction sets/intelligence com-
ponents that function to receive a list of resolved PH data
values for each requested PH 1D as shown at 150 in a data
binding response from the data binding web service 132.

25

30

40

45

55

6

Servers 120, 130 may be communicatively linked directly or
by a digital communications network such as a local area
network (LAN), a wide area network (WAN), an Intranet, the
Internet, or other such network in a wired or wireless manner
as may the client 110 be connected to the server 120. In some
embodiments, the document 122 has no knowledge of what
happens or the resolving processes occurring in or behind the
data binding web service 132.

The system 100 further includes a third server 140 that
includes data storage storing a data dictionary database 144.
The term “server” as used herein is intended to cover any
computer or electronic device that may include one or more
processors, data storage and memory for storing code devices
or instructions that may be run or used to cause the server or
computer to perform particular tasks, and input and output
devices for receiving user input and outputting or displaying
information such as one or more user interfaces or graphical
user interfaces (GUIs) as shown with a data dictionary visual
interface 146 that may be generated to facilitate creation or
utilization of the data dictionary database 144. As shown, the
server 140 also runs or provides a data dictionary web service
142 that interacts with the data binding web service 132 and
with the data dictionary database 144 as discussed herein.
Three servers 120, 130, 140 are shown but a greater or smaller
number may be used to practice the system 100 and provide
the functions described in the process of FIG. 2. In other
words, the location of the document 122, the data binding web
service 132, the data dictionary web service 142, and the data
dictionary database 144 is not limiting to the system 100 as
these components typically communicate via web service
calls.

When the data binding web service 132 receives a
requested list of PH IDs 124, the data binding web service 132
interacts as shown at 134 and 148 with the data dictionary
web service 142 to hydrate the list of PH IDs into a list of rich
PH objects 148 that contain all PH-related information and
that are communicated to or returned to the data binding web
service 132. The data dictionary web service 142 accesses the
data dictionary database 144 with the PH ID list 134 to create
the PH objects 148. Once the list of PH objects 148 is
obtained, the data binding web service 132 males a call via a
framework interface 136 provided on the server 130 into a
data source 138, which contains (or is the location of) actual
data or enterprise data assets. The interface 136 may be a
custom implementation, as shown, with solution-specific
code that interacts with a particular data source or back-end
entity 138 in order to get the data necessary to resolve the PH
values as shown at 150. The call from the interface 136 returns
alist ofresolved PH objects (i.e., the objects now contain their
resolved data values based on solution-specific data sources
138 that may be sitting or residing behind the interface 136).
The data binding web service 132 may then respond to the
document’s request 124 with a data binding response 1550
that includes a list of resolved PH values. Once the document
122 has received the response 150 (which contains the
resolved PH data values) from the data binding web service
132, the document replaces each placeholder (in data fields,
in particular content, or the like) with its pertaining or corre-
sponding resolved data value. Note that in some cases, <data>
is submitted to the DBWS 132 as part of the request 124, the
data source 138 for the PI resolution may be the <data> node
itself (and its contents), depending on the data it contains and
what the PH represents.

FIG. 2 illustrates a data binding process 200 with abstrac-
tion of data in a served document from a particular data asset
storage location, as may be implemented by operation of the
system 100 of FIG. 1 and other devices/components

US 9,361,297 B2

7

described herein. The data binding process 200 begins at 204
typically with a selection of the types of documents to be
supported by the data binding, design/configuration of a data
dictionary, and, in some cases, storing data in a data store
(e.g., creation and storage of actual data or data assets that
may later be retrieved/accessed to resolve placeholders in a
document into placeholder data values). In step 210, the
method 200 includes building a data dictionary database that
may be stored in a system or network (e.g., a data storage
device) so as to be accessible to respond to placeholder reso-
Iution requests.

As noted above, a data dictionary or DD database is gen-
erally a collection of placeholders that represent data that can
be included in a document built from a template, and each
entry may include a placeholder ID along with one or more
fields with additional information or content that generally is
not desirable to present in a document (e.g., too much infor-
mation) and also information that is useful for the data bind-
ing web service to determine a data location in a data source.
Building the data dictionary database at 210 may involve use
ofa Ul suchas Ul 146 shown in FIG. 1, e.g., a picture of atree
of placeholders on the left and an editor for placeholder-
related values on the right and buttons to add/insert/delete
placeholders in the data dictionary database or the like. The
data dictionary database is, in brief, a series of placeholders
with related values. One way to define the data dictionary
database would be as follows (with an XML example pro-
vided for ease of explanation and not as a limitation):

<dd>
<ph id="{id}" text="{string}* type="*string|number|list’
source="{string}* custom="{string} ">
{Optional description}
</ph>
</dd>

The example above shows a number of aspects of this
exemplary data dictionary database and its placeholders.
Each placeholder has a unique ID (@id) that is generated by
the data dictionary application (e.g. that is not user specified).
A placeholder entry may also include text to insert including
optional boilerplate text (@text where { } are used to specify
the single piece within the text that should be replaced with
the data value and anything outside the { } is considered
boilerplate that is not replaced with the data value). Each
placeholder entry in the DD database may have a type
(@type) that indicates the type of the data for the placeholder
with a choice in this example of string (default, for textual
data), number (for numeric data), and list (for the case where
a list with multiple values may be associated with a place-
holder and the user may choose from one of the choices that
may be loaded from a data source).

Each placeholder entry may further include an optional
source (@source) that may be used to help with coding the
back-end web service operations of the data binding web
service by providing a way to identify a set of placeholders
that belong to a common data source (note, that this may
simply be an ID specified by an administrator or administra-
tor module that may be used at the back-end to identify a set
of instructions to execute in order to retrieve the data for the
placeholder). An optional custom field (@custom) may be
provided and set to any arbitrary string that can help the
back-end implementation or data binding web service in per-
forming actions useful to reconcile a result as data into the
placeholder. Also, each placeholder entry in the data dictio-
nary database may include an optional description as he con-

10

15

20

25

30

35

40

45

50

55

60

65

8

tent of the <ph> node, which can be displayed in various Uls
to help explain the use of a particular placeholder to a tem-
plate generator or other users of the DD database.

Atthis point, it may be useful to provide a relatively simple
example of a data dictionary database to assist in understand-
ing how it may be used to generate fuller PH objects or
hydrated PH objects from lists of PH IDs to assist in resolving
a PH resolution or data bind request into a set of PH data
values (which can then be merged into or used to replace the
PHs in a document). The following is a sample DD with a few
entries.

<dd>
<ph id="1" text="Dear {First Name} source="Query1’
custom="firstName’/>
<ph id="2" text="{Address}’ source="Query1’ custom="address’/>
<ph id="3" text="{Credit Card type}’ type="list’ source="Query2’
Custom="cardName’>
Provides a list of credit cards to choose from.
</ph>
</dd>

The above data dictionary or DD database has three entries
that provide fuller forms of a placeholder (i.e., more informa-
tion than typically would be desirable to be stored in a tem-
plate for use in runtime rendering of the template into a
document) that may be used to create hydrated PH objects
from lists that include any of the three entries. The three
entries may be resolved to the following values when the data
binding web service uses its interface to call or access a
corresponding data source (which may be located using the
datalocation information in the PH entry in the DD database).
The PH data values may be merged into the placeholders in
the document produced from a template, and the values may
be: (a) for PH ID ‘1°, “Dear Steve”; (b) for PH 1D <2°, “343
Preston Street”; and (c¢) for PH ID “3’, “Visa” as per choice
made by a user interacting with the document on a client
device from the choices “Visa, MasterCard, Amex”.

The method 200 may continue at 220 with creating and
storing templates that include placeholders (or, more accu-
rately, PH IDs) in a data store or memory. The templates
typically also would include intelligence/code that may be
used by a computer or its processor to create a data binding
request to be sent to a data binding web service and also to
process a data binding response with placeholders resolved to
their associated data values (e.g., a template and a document
rendered using the template may include a data binding
request engine and a data binding response processor or the
like). Typically, placeholders (PHs) may be added to tem-
plates indirectly by including content, such as paragraphs of
in a letter or the like, during template creation that itself
includes PHs. In some cases, though, PHs may be added
directly to a template. A processing instruction is used during
the template creation to specify each PH’s ID, type, and name
(which may be generated based on the PH’s text) from the
data dictionary database in the location where it is included in
the content of the template or in the template. The processing
instruction may also be used during the authoring process of
content that contains a placeholder (e.g., inserting a PH into a
paragraph, which is saved as a fragment and, subsequently,
inserted into a template, thereby indirectly inserting the PH
into the template).

For example, in a letter template, the processing instruc-
tions may be converted into data fields. Each data field may be
manufactured according to the information provided. Refer-
ring to the above DD database example, the processing
instructions may be as follows (for an Adobe Correspondence

US 9,361,297 B2

9

Management (or CM) implementation): (1) <?cm DearFirst-
Name id=1; type string?>; (2) <?cm Address id=2; type
string?>; and (3) <?cm CreditCard Type id=3; type=list?>. In
the processing instructions above, the domain is “cm”, the
key is the name of a data field generated from the PH’s @text,
and the value is the @id and @type information.

FIG. 3 illustrates a template 300 that may be generated with
this technique to include a first data field 310 with a place-
holder ID 312 (“PH 1), a second data field 320 with a
placeholder 1D 322 (“PH 2”), and a third data field 330 with
a placeholder 1D 332 (“PH 3”), each of which may be pro-
vided indirectly during creation of the template in content
with a PH ID. As shown PH 1 and PH 2 became text fields
because of the string type and PH 3 became a drop down list
because of'the list type. In each case, the default value of each
data field 310, 320, 330 is the unique PH ID 312, 322, 332.
The intent here may be that the PH resolution algorithm in the
template may first look for the existence of the field’s data
node (as may be suggested by its data binding). If it does not
exist, then data was not retrieved from the DBWS and the
field’s default value may be used as the PH ID for the request
(otherwise, the request does not take place and the field’s
value is set according to its data binding into the ddData space
for example). An XML data binding is also set for each inside
the designated ‘ddData” space (data dictionary data space)
where the bound data node is the name of the data field that
was generated based on the PH @text information. In this
case, the XML data binding was used such that resolved PH
data is retained and does not have to be re-resolved. In some
letter filling implementations, XML data is submitted back to
another process, and the XML data may contain the resolved
PH data so that when the XML data is merged back into the
letter template to generate the resulting letter, the PH data is
exactly like what had been previewed. Further, if the PH data
is collected, the process may more easily use an XPath
expression or the like into the submitted XML data in order to
extract the PH data of interest (e.g., in the case of the credit
card type list, the process may want to capture the type
selected by the user during letter or form filling interactions).

The method 200 may continue with creating or serving a
document by rendering a template created in step 220. As
shown, in FIG. 1, the document 122 may be presented on a
server 120 that is accessible by a number of users or operators
of client devices 110. At 230, the method 200 includes receiv-
ing user-provided data or interaction input for the served
document via a client device (or an [/O component of the
server serving the document), e.g., a user identifier, a selec-
tion of a credit card type, information based on the fillable
fields of the document, and so on. Note that step 230 may be
useful such as when the data retrieved was user-specific, but
there are many times when the document may immediately go
outto the DBWS and get resolved placeholder values without
any initial data (e.g., company name, company address, and
so on such that step 230, which may be considered optional,
is not required for the method 200 to be performed properly in
many cases).

At 240, with a data binding web service, the method 200
continues with receiving a data binding request (e.g., from
code/intelligence in the document served in step 230). Typi-
cally, the request is created and sent by the document or
code/modules in the runtime version of the document (which
is rendered from the template). Once the list of placeholders
in the template is established, such as by having data fields
created according to processing instructions describing the
PHs in use as discussed above, the data for the PHs may be
retrieved, e.g., during letter or form filling-type interaction
with a user operating a client node. This may be accomplished

10

15

20

25

30

35

40

45

50

55

60

65

10

by calling a specific web service (such as data binding web
service 132 shown in FIG. 1) that may have a doc/literal
function (e.g., some implementation including form template
web service data connections may support doc/literal) that
accepts a list of PH IDs as the request and responds with a list
of PH IDs and their associated, resolved data. Typically, the
web service does not have to be doc/literal, e.g., it may be
RPC-based or the like, with the doc/literal implementation
being particularly useful within an XFA template and other
applications.

In a letter filling implementation, for example, a letter
template may have a predefined data connection to the data
binding web service (or the doc/literal function of the web
service). When the document or letter filling experience or
interaction is initialized (e.g., a form initialize event or the
like), the PH IDs may be collected and sent to the data binding
web service as the data binding request or data binding web
service request. PH ID collection may be from data fields
(such as fields located inside content forms or subforms that
may have complex content that contains fillable fields that are
seeded with PH data, e.g., a fillable shipping address block
where the fields are seeded with the customer’s address that
may be on file or stored at a particular location in a data source
accessible by the data binding web service). In one embodi-
ments, a script (or other modules/code) embedded in the letter
template may take care of collecting the PH IDs and execute
the request on the data binding web service. The timing of the
resolution of the placeholders into data may be varied to
practice the data binding method 200 (such as by customizing
the template script or the like to set a timing of PH resolving).

The data binding web service request provided at step 240
may contain a list of PH IDs to resolve and may, depending on
how the data is being fetched, contain an optional data node
that contains the data in the case where the data comes from
the process that launched the document (or forny/letter filling
experience). FIG. 4 illustrates one exemplary implementation
of'a data binding web service request 400. The request 400 in
this example is a single XMl -encoded string and may be
thought of as a “non-hydrated” list of PH IDs. The use of an
XML-encoded string may be useful in some cases because it
is dynamically generated at runtime of the document, and the
data binding web service may be invoked programmatically
without using import/export bindings on the data fields. As
shown in FIG. 4, in the PH list 410, there may be one PH node
412 per datafield of a template or document with a PH ID 414.
This information is processed at 240 by the data binding web
service to determine which placeholders are being requested
(or which PHs will be resolved into data values).

A data node 418 may be included in the request 400 and
may be used to pass a variety of data (e.g., in a letter/form
filling experience or application the current document object
model (DOM) content may be passed into the web service via
the data node 418). The data in node 418 may contain data
initially merged into the document (or letter/form filling
experience or application) that may include information that
may be used to resolve the PHs into data values. For example,
in order to resolve PH ID 1, in the above examples, a customer
ID may be included in the data so that the data binding web
service may perform an appropriate query in order to retrieve
data for a specific customer that might be the intended recipi-
ent of the letter being built or be the user filling the form/
document or the like. The data used to resolve the PHs by the
data binding web service may be the process data itself (e.g.,
the data initially merged into the document or filling experi-
ence/implementation), in which case, the data node 418 may
also provide a way to get that data to the data binding web
service so that the placeholders in the list 410 may be

US 9,361,297 B2

11

resolved. Typically, the document itself that generates the
request 400 may be unaware of how the placeholders in the
list 410 will be resolved to their respective values. In the
example provided above, a data binding request 400 (manu-
factured by the initialization script, for example, in a PDF
within a form/letter filling experience) may contain a PH list
410 including the following PH nodes 412 with IDs 414: “<ph
id="1’/> <ph id="2"/> <ph id=3"/> " and the following data
node 418: “<data> <customerID>abcl23</customerID>
</data>".

The data binding method 200 of FIG. 2 continues at 244
with generating a data dictionary request or data dictionary
web service request, and the DD request may be generated by
the data binding web service based on the data binding
request received in step 240 and may include a list of PHs
extracted from the data binding request. The data binding web
service may be implemented with a resolve placeholders
engine or function (such as a doc/literal function) that accepts
a data binding request (e.g., an XML-encoded string as the
request) and returns a set of resolved placeholder data values
as the data binding response (e.g., an XML-encoded string as
the response). When the data binding request is received in
step 240, the data binding web service may convert the XMI-
encoded string of PH IDs into a rich collection of PH objects
by cross-referencing the PH IDs with entries in a data dictio-
nary database via a data dictionary web service such as by
generating a DD request.

In some embodiments, in order to provide a way for the PH
IDs to be cross-referenced with the DD database, a data
dictionary web service (such as service 142 of FIG. 1) may be
exposed via a web service interface in order serve this type of
DD request. The data dictionary web service may uses a
retrieve placeholders engine or function may act (between
steps 244 and 250) to process or accept a DD request with an
array of PH IDs, to access the DD database with this PH ID
list, and to return a corresponding array of PH attributes (e.g.,
fully hydrated PH objects). The retrieve placeholders func-
tion may again be in doc/literal format to support particular
implementations.

FIG. 5 illustrates an exemplary data dictionary web service
request 500 that may be generated by the data binding web
service and processed by the DD web service. As shown, the
request 500 would include a list of placeholders 510, and in
this list 510, there may be one PH node 512 per data field and
each node 512 may include a PH ID 516. This information
would be used by the DD web service to determine which
placeholders are being requested (or which PHs to hydrate
with further information such as source location information)
and is consistent with the request format of the data binding
web service (e.g., similar except for a data node). Addition-
ally, the request 500 may include a section for arbitrary data
such as <data> for the <phList> from the template to the
DBWS. In one exemplary implementation, a special key or
username/password may be provided in order to access the
DDWS, and this information may be provided via the
<phList> request 500 to the DDWS.

FIG. 6 illustrates an exemplary data dictionary web service
response 600 that may be returned by the DD web service
such as a single XML-encoded string structured as shown in
FIG. 6. The response 600 includes a list of placeholders 610
corresponding to the list 510 in the request 500 with a PH
nodes 616 that include a PH ID 618 as well as additional data
or content 620 stored in the DD database that may be used to
resolve the placeholder such as to identify a source and/or to
generate the PH data values for merging into the requesting
document. The PH node 616 in the response 600 may be
identical in format to the PH node in the data dictionary

10

40

45

12

database. Given that there are two web services in a typical
data binding system (or that provide the functionality of
method 200), this implies that each one could reside in dif-
ferent systems/servers/devices if desired. For example, the
DD web service may be located on a system that holds legacy
corporate data while the data binding web service may be
located within a server rendering and/or serving the docu-
ments from templates. In other cases, though, the DD web
service may be on nearly any machine such as the document
server while the data binding web service may be on the
machine/server that is closest to the actual data such as an
MBM mainframe or the like that manages a database of data
assets for an enterprise (e.g., a DB2 database or the like),
which may place the data binding web service and data source
of the data used to resolve placeholders on a single device or
within a single box.

In step 260 of the method 200 of FIG. 2, the interface
and/or data binding web service may act to resolve the place-
holder objects by processing the hydrated PH objects in the
DD response and also by accessing an identified/determined
data source that is storing the data referred to or associated
with each PH in the request list/array. The PHs with a speci-
fied @source attribute in the DD database may be grouped
together and an interface function, such as interface 136
shown in FIG. 1, may be called to resolve the abstracted data
bindings. The function may receive input such as data includ-
ing the content of the data node that was part of the data
binding request and a source that may be a common value of
the @source attribute for all of the PHs in the list. The func-
tion may also provide as output (as well as receive as input) a
list (or array/collection) of the PH objects pertaining to the
specified source. An enterprise or system administrator may
provide an implementation of the interface function provid-
ing instructions on how to handle various data sources. For
example, the implementation may involve a switch statement
on the data source that would call a function specific to the
source.

Referring back to the ongoing example provided herein,
PH ID 1 and PH ID 2 both have the same source (“Query1”)
while PH ID 3 has a different data source (“Query2”). This
inlay mean that there would be two calls into the resolve
placeholder function by the data binding web service. One
call with a list of two PH objects (IDs 1 and 2) with “Query1”
as the source and another call with a different PH object (ID
3) in the list and “Query2” as the data source. Going a bit
deeper into the explanation, an administrator may implement
a function (such as resolveQueryl(data, list) function) that
would execute a pre-defined query on the backend or data
asset source database, for example, that retrieves a customer’s
name and address information. The query can be made with
the help of the customer ID node in the data, and information
from the query result (that may be a specific customer table
row) can be set into each PH object using the @custom PH
information In the example, for PH ID 1, @custom was set to
“firstName” while for PH ID 2, @custom, was set to
“address.” Using this information, the code may know that the
firstName column data from the query result is the value for
PHID 1 and the address column data is the value for PHID 2.

The code may then set the values on the PH objects and
return. When setting the values on the PH objects, any boil-
erplate text that is part of the PH’s text (@text) may be
retained. For example, PH ID 1 has @text="Dear {first
Name}’. Once the first name data is resolved (e.g., “Steve™)
and set into the PH object returned to the framework, the PH
object’s value may become “Dear Steve” where “Dear” is
boilerplate text that is part of the placecholder and is not
replaced by the resolved PH value. Once the data binding web

US 9,361,297 B2

13

service has completed iterating through the collection of PHs
via the interface function (e.g., by calling resolve placehold-
ers function for each subset of similarly-sourced placehold-
ers), the data binding web service may create the XML-
encoded response string (or data binding response) from the
PH list and return it to the caller (e.g., a document such as
XFA-PDF document in a letter filling experience) as shown at
270 in the method 200 of FIG. 2. Once the response is
received, the resolved PH values may be distributed into the
document as shown at 280 and the method 200 may end at 290
or continue at 230.

The data binding web service response as shown at 700 in
FIG. 7 may contain a list 710 of placeholders (e.g., the same
listing as found in the data binding request), but each node
712 would include a PH ID 712 and also a resolved data
value(s) 718 associated with the placeholder ID 712. The data
binding web service may create a data binding response 700
that may be a single XML-encoded string. Since it is dynami-
cally generated at runtime and the web service is invoked
programmatically without using import/export bindings on
the data fields (but in other cases, import/export bindings on
hidden fields may be used to communicate with the DBWS).
The data value 718 may be a simple string or it may take other
forms such as a repeatable XML node for a list of values of a
single placeholder (such as <item default="*0[1">{value}</
item> where @default is optional and identifies the item that
contains the list’s default value if specified and set to ‘1°).
Following the ongoing example discussed herein, the data
binding response may contain the following data (note the
correlation between these results and the resulting values in
the DD example above): for PH ID 1, the value may be “Dear
Steve”; for PH ID 2, the data value returned may be “343
Preston Street”; and for PH ID 3, the values maybe “<item
default="1">Visa</item> <item>MasterCard</item>
<item>Amex</item>"".

Given the response data, the initialization script may set the
value of the data fields (e.g., using the IDs to match) to the
data returned from the data binding wet) service, which
would, in turn, result in the PHs reflecting the new values
within their respective content in the PDF or document inside
the letter or form filling experience. In the case of PH ID 3
(e.g., the list of credit card types), the data field would be
assigned the default item’s value (e.g. if no default is identi-
fied in the response, the data field would not get a default
value) and the data field, being a drop down list in this
example, may get three new items to choose from: “Visa”,
“MasterCard”, and “Amex”. A letter filling experience guide
on the server/machine may then expose the drop down list in
the document so that the user operating a client node may
make a selection.

FIG. 8 illustrates a system 800 in which data binding may
be provided using the abstraction techniques described herein
(e.g., via the process 200 of FIG. 2). System 800 is similar to
system 100 but shows that many of the components may be
provided on a single wet) server (or box/machine/system)
830. As shown, the system 800 may be used to allow a set or
number of client nodes 810 to access the web server 830 via
a digital data communications network 820 (the Internet, an
intranet, or the like) In operation of system 800, each client
node 810 may be nearly any computer or electronic device
adapted for communicating with server 830 over network 820
such as a personal computer, a wireless communication
device, or the like. Each client node 810 may be operated by
auser such as to request and interact with a letter or form (e.g.,
provide user data via a form or letter filling experience or to
produce documents for transmittal to customers or the like).
Each node 810 may include a processor 812 that runs input/

10

15

20

25

30

35

40

45

50

55

60

65

14

output devices 814 such as a keyboard, mouse, touchscreen,
and the like to receive user input data. The node 810 also
includes a monitor or display 816 that is used to display a GUI
817 and/or document 818 as may be provided or served by
web server 830 (e.g., a document as discussed above as being
a runtime version of a template with data fields that include
placeholders).

The system 800 includes a web server 830 that includes a
processor 832 that runs /O devices 834 such as to allow an
operator to create templates for documents 840 and to create
a data directory in data storage 880 as shown by sets of entries
882 in a database that include placeholder IDs along with
placeholder content (e.g., information for resolving the place-
holders into data values such as source information or infor-
mation useful for determining a source). The processor 832
may also execute or run code/instructions to provide an inter-
active document 840 (e.g., based on a template), a data bind-
ing web service 860, and a data dictionary (DD) web service
874. These code components may be provided on computer-
readable medium and configured to cause the processor 832
(and web server 830) to provide the functions described
herein (such as discussed in method 200 of FIG. 2).

The document 840 includes data fields 842 as may be
defined in a template to include placeholders or handles pro-
viding a link to data in a data source 888 and as identified by
PH IDs 844. The document 840 also includes intelligence
including a data binding request function 846 and a data
binding response processor (or initialization script) 848. Dur-
ing runtime, the data binding request function 846 may act to
process the data fields to find/identify each PH 1D 844 and to
generate a data binding request 850 via a communication link
with data binding web service 860. The data binding request
850 may include a list of PHs (or PH IDs) 852 from the
document 840 and may also include request resolution data
854 that may be used by the data binding web service 860 to
resolve the PH IDs into data values (e.g., customer/client IDs,
process data, document data, and so on that may be used to
determine which data assets 889 are relevant to the document
840, data fields 842, and/or placeholders 844). The function
846 may be thought of as a request placeholder resolution
function that collects the IDs from PHs 844, builds the XML-
encoded (in some cases) request 850, and sends it to the data
binding web service 860. The initialization script 848 acts to
process returned data binding responses 890 with PH data
values 894 so as to modify the document 840 to display or
include the data values associated with each placeholder 844
(e.g., replace the placeholders 844 in the data fields 842 with
actual data rather than the mere abstraction of data and data
asset locations provided by the PHs).

The server 830 further includes a data binding web service
860 that includes a resolve placeholders function 862 along
with a data source interface 868. The function 862 acts to
process the data binding request 860 and generate a data
dictionary request 870 that is transmitted to or used to inter-
face with the DD web service 874. The DD request 870
includes alist 871 of placeholders based on the list 852 of PHs
to be resolved into data. The DD web service 874 uses its
retrieve placeholders function 876 to process the DD request
870 to access a DD directory in data storage device 880 that
includes a listing or array of entries 882 with PH IDs and also
sets or fields of PH content, which may include source infor-
mation that may be used to locate a data storage or data source
888 of data assets 889 associated with the placeholders 844 of
a document 840. The retrieve placeholders function 876 also
acts to generate a DD response 884 that is returned to the data
binding web service 860 and that includes a PH list 885 along
with PH content 886 for each placeholder. The resolve place-

US 9,361,297 B2

15

holders function 862 then uses this information to place a call
via data source interface 868 on data storage or data sources
888 to access data assets 889 identified and/or associated with
PHs in the list 886. With the data assets, the resolve place-
holders function 862 acts to create and return the data binding
response 890 to the document 840 including PH IDs and PH
data values 894. The data binding response processor 848
then uses these data values to replace the PH IDs in the
document. The processor or apply placeholders function 848
takes the web service response 890 and applies the resolved
PH values 894 into their respective data fields 842 throughout
the PDF 840 (and in document 818).

Although the invention has been described and illustrated
with a certain degree of particularity, it is understood that the
present disclosure has been made only by way of example
arid that numerous changes in the combination and arrange-
ment of parts can be resorted to by those skilled in the art
without departing from the spirit and scope of the invention,
as hereinafter claimed. Embodiments, such as the systems
shown in FIGS. 1 and 8 and the method 200 of FIG. 2, of the
subject matter and the functional operations described in this
specification can be implemented in digital electronic cir-
cuitry, or in computer software, firmware, or hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or more
of'them. Embodiments of the subject matter described in this
specification can be implemented as one or more computer
program products, i.e., one or more modules of computer
program instructions encoded on a computer-readable
medium for execution by, or to control the operation of, data
processing apparatus (such as the web services, the document
and its intelligence/functions/scripts, and so on). The com-
puter-readable medium can be a machine-readable storage
device, a machine-readable storage substrate, a memory
device, a composition of matter affecting a machine-readable
propagated signal, or a combination of one or more of them.
The term “data processing apparatus” encompasses all appa-
ratus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can include,
in addition to hardware, code that creates an execution envi-
ronment for the computer program in question, e.g., code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination
of one or more of them.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, and it can be deployed in any form, includ-
ing as a stand-alone program or as a module, component,
subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily cor-
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in a
single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
subprograms, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and

10

15

20

25

30

35

40

45

50

55

60

65

16

apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit). Processors
suitable for the execution of a computer program include, by
way of example, both general and special purpose micropro-
cessors, and any one or more processors of any kind of digital
computer. Generally, a processor will receive instructions and
data from a read-only memory or a random access memory or
both. Generally, the elements of a computer are a processor
for performing instructions and one or more memory devices
for storing instructions and data. Typically, a computer will
also include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a
mobile audio player, a Global Positioning System (GPS)
receiver, a digital camera, to name just a few. Computer-
readable media suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g.,, EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
invention or of what may be claimed, but rather as descrip-
tions of features specific to particular embodiments of the
invention. Certain features that are described in this specifi-
cation in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of a
single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as act-
ing in certain combinations and even initially claimed as such,
one or more features from a claimed combination can in some
cases be excised from the combination, and the claimed com-
bination may be directed to a subcombination or variation of
a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and/or parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
beunderstood as requiring sub separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a

US 9,361,297 B2

17

single software and/or hardware product or packaged into
multiple software and/or hardware products.

The functions and data binding methods described herein
may be provided as a computer program product that may
include a computer useable medium and computer readable
code embodied on the computer useable medium, such as one
used for providing an interactive document with data binding
abstractions. In such implementations, the computer readable
code may include computer readable program code devices
causing a computer to receive from a runtime document a list
of placeholder identifiers. Also, the computer readable code
may include computer readable program code devices caus-
ing the computer to access a data dictionary database with the
list of placeholder identifiers to associate a set of placeholder
content with each of the placeholder identifiers in the list of
placeholder identifiers. Further, the code may include com-
puter readable program code devices causing the computer to
determine a data source for a data value associated with each
of the placeholder identifiers from the sets of placeholder
content, and, also, it may include computer readable program
code devices causing the computer, for each of the place-
holder identifiers, to access the data source and obtaining the
data value. The code may further include computer readable
program code devices causing the computer to transmit a data
binding response to the runtime document that includes the
placeholder identifiers and the obtained data values.

We claim:

1. A computer-implemented method, comprising:

serving an interactive document to a client via a commu-

nications network, the interactive document comprising
a data field with a placeholder for a data value, the data
field being free of a data binding to a source of the data
value;

receiving a request to resolve the placeholder of the inter-

active document;
generating a data dictionary request including a place-
holder identifier associated with the placeholder;

processing a data dictionary response including place-
holder content associated with the placeholder identi-
fier;

accessing the source to obtain the data value using the

placeholder content; and

providing a data binding response to the interactive docu-

ment including the placeholder identifier and the data
value.

2. The method of claim 1, wherein the request to resolve the
placeholder comprises the placeholder identifier and request
resolution data used by a data binding web service in the
accessing of the source to obtain the data value.

3. The method of claim 2, wherein the request resolution
data comprises data entered into the interactive document
with the client during the serving of the interactive document.

4. The method of claim 1, wherein the data dictionary
response is generated by a data dictionary web service pro-
viding an interface to a data dictionary database, wherein the
data dictionary database includes a plurality of entries that
each include a placeholder identifier and each further include
a set of placeholder content, and wherein the placeholder
content is associated with source information used during the
processing of the data dictionary response to determine the
source of the data value.

5. The method of claim 4, wherein the entries of the data
dictionary database provide no bindings to a location of the
source.

6. The method of claim 1, further comprising:

with a data binding response processor in the interactive

document,

5

15

30

35

40

45

65

18

processing the data binding responses; and

replacing the placeholder in the interactive document
with the data value provided in the data binding
response.

7. The method of claim 1, wherein the serving of the
interactive document comprises rendering the interactive
document from a template, the rendering providing a plurality
of'data fields each with a placeholder for a data value and each
without a static data binding reference for the data value.

8. A non-transitory computer readable medium embodying
instructions which, when executed by a computer, cause the
computer to:

receive from a runtime document a list of placeholder

identifiers associated with data fields of the runtime
document, the runtime document being rendered from a
template, the data fields being free of data bindings to
sources of data values for the data fields;

access a data dictionary database with the list of place-

holder identifiers to associate a set of placeholder con-
tent with each of the placeholder identifiers in the list of
placeholder identifiers;

determine a data source for a data value associated with

each of the placeholder identifiers from the sets of place-
holder content;

for each of the placeholder identifiers, access the data

source and obtain the data value; and

transmit a data binding response to the runtime document

that includes the placeholder identifiers and the obtained
data values.

9. The computer readable medium of claim 8, wherein the
runtime document comprises the data fields each including a
placeholder associated with one of the placeholder identifi-
ers, the data values being inserted in place of the placeholder
identifiers in the data fields.

10. The computer readable medium of claim 8, wherein
neither of the runtime document and the data dictionary data-
base includes static data binding references to data sources
associated with the data values.

11. The computer readable medium of claim 8, wherein the
instructions further cause the computer to:

render the runtime document using a template stored in

memory, wherein the template generates a data binding
request including the list of placeholder identifiers and
processes the data binding response to merge the
obtained data values into the runtime document in place
of the placeholder identifiers.

12. The computer readable medium of claim 8, wherein the
placeholder content identifies the data source for each of the
placeholder identifiers without providing a static location
reference to the data source.

13. A computer system, comprising:

a processor; and

data storage in communication with the processor storing:

a database with entries that each include a placeholder
identifier and a set of placeholder content including a
data source identifier; an interactive document module
comprising a data binding request module; and a data
binding web service module;

wherein the interactive document module is run by the

processor to serve an interactive document, wherein the
served interactive document includes a set of data fields
that each include a placeholder, the set of data fields
being free of data bindings to sources of data values for
the data fields,

wherein the data binding request module is run by the

processor to issue a data binding request with a list of
identifiers for the placeholders; and

US 9,361,297 B2

19

wherein the data binding web service module is run by the
processor to resolve placeholders by processing the data
binding request, by accessing the database, and by trans-
mitting a data binding response to the served interactive
document providing the list of placeholder identifiers
and a data value associated with each of the placeholder
identifiers.

14. The system of claim 13, wherein the accessing of the
database with the data binding web service module comprises
transmitting a request with the list of placeholder identifiers
and receiving, in response, a set of placeholder objects that
each include one of the placeholder identifiers and an associ-
ated one of the sets of placeholder content.

15. The system of claim 14, further comprising a data
dictionary web service module run by the processor to pro-
cess the request from the data binding web service module,
retrieve the sets of placeholder content, and generate the set of
placeholder objects.

16. The system of claim 14, wherein the data binding web
service module is run by the processor to determine a source

15

20

based on the data source identifier in each of the sets of
placeholder content and to call a data source interface to
obtain the data values from the determined sources.

17. The system of claim 16, wherein the data binding
request further comprises request resolution data associated
with each of the placeholder identifiers and wherein the
sources are determined in part based on the request resolution
data.

18. The system of claim 13, wherein the interactive docu-
ment comprises a runtime rendering of a template and
wherein the runtime rendering produces no static data source
references for the data fields.

19. The system of claim 13, wherein the interactive docu-
ment further comprises a function that processes the data
binding response to replace the placeholders in each of the
data fields with a corresponding one of the data values.

20. The system of claim 13, wherein the data source iden-
tifier comprises a name of a data source storing a number of
the data values.

